Volume of a Cylinder


V = area of base x height
V = (πr2) x H
Volume = π·r2·H




Example 1: Find the volume


V = π·r2·H
V = π·52·11
V = 863.9 cm3   rounded to 1 d.p.



Example 2: The volume is 890 cm3. Find the height

V = π·r2·H
890 = π·72·H
890 = 153.94·H
5.8 = H   rounded to 1 d.p.



Example 3: The volume is 1800 cm3. Find the radius

V = π·r2·H
1800 = π·r2·12
1800 = (37.70)r2

          1800/37.70 = r2
          48.65 = r2 ... now do a square root:
          7.0 = r   rounded to 1 d.p.



Surface Area of a Cylinder

The surface area formula has three parts:
TOP: circle area π·r2
BOTTOM: circle area π·r2
CENTRE WRAP-AROUND SECTION:
   This is a rectangle:
   - Its length is the distance around, which is
     the circumference of a circle: 2·π·r
   - Its width is H
  So its area is 2·π·r·H
  Surface Area = 2·πr2 + 2·π·r·H



Example 4: Find the surface area


SA = 2·πr2 + 2·π·r·H
SA = 2·π·52 + 2·π·5·11
SA = 502.7 cm2   rounded to 1 d.p.




Example 5: The surface area is 1000 mm2. Find the height

SA = 2·πr2 + 2·π·r·H
1000 = 2·π42 + 2·π·4·H
1000 = 100.53 + 25.13·H
899.47 = 25.13·H
35.8 mm = H




Example 6:

What are the area and dimensions of the label
   on a Campbell's soup soup can?
This is the wrap-around portion of the formula:
   SA = 2·πr2 + 2·π·r·H
   SA = 2·π·r·H
   SA = 2·π·(3.25)·10
   SA = 204.2 cm2



The dimensions are its width and length:
Width = height = 10 cm
Length = 2·πr = 2·π(3.25) = 20.4 cm



Resources


Content, artwork, HTML & design by Bill Willis 2024